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Differential gene expression 
analysis reveals novel genes and 
pathways in pediatric septic shock 
patients
Akram Mohammed   , Yan Cui, Valeria R. Mas & Rishikesan Kamaleswaran   

Septic shock is a devastating health condition caused by uncontrolled sepsis. Advancements in high-
throughput sequencing techniques have increased the number of potential genetic biomarkers under 
review. Multiple genetic markers and functional pathways play a part in development and progression 
of pediatric septic shock. We identified 53 differentially expressed pediatric septic shock biomarkers 
using gene expression data sampled from 181 patients admitted to the pediatric intensive care unit 
within the first 24 hours of their admission. The gene expression signatures showed discriminatory 
power between pediatric septic shock survivors and nonsurvivor types. Using functional enrichment 
analysis of differentially expressed genes, we validated the known genes and pathways in septic 
shock and identified the unexplored septic shock-related genes and functional groups. Differential 
gene expression analysis revealed the genes involved in the immune response, chemokine-mediated 
signaling, neutrophil chemotaxis, and chemokine activity and distinguished the septic shock survivor 
from non-survivor. The identification of the septic shock gene biomarkers may facilitate in septic shock 
diagnosis, treatment, and prognosis.

Septic shock is a life-threatening organ dysfunction caused by an imbalanced host response to infection1. 
Multi-omics sequencing technologies have increased the number of genetic biomarkers2. Single or combination 
biomarkers are increasingly being analyzed and tested in the context of genes, RNA, or proteins3–6. Many strate-
gies for uncovering biomarkers exist, such as mass-spectrometry, protein arrays, and gene-expression profiling. 
Furthermore, it has been demonstrated that multiple genes and immune system-related pathways participate in 
development of pediatric septic shock7.

High-throughput technologies support the analysis of gene expressions and also enable the ability to deter-
mined activity of these genes in different conditions8. Statistical testing and machine learning methods have been 
frequently used to successfully utilize omics data for biomarker discovery2,9–18.

The purpose of this study is to identify differentially expressed pediatric septic shock biomarkers using gene 
expression data to predict long-term outcomes. To that end, gene expression data from 181 samples collected from 
critically ill patients admitted to the pediatric intensive care unit (PICU) within the first 24 hours of their admission, 
were analyzed using multiple statistical testing methods to identify gene biomarkers. The gene expression profiles 
discovered by this statistical approach may lead to new insights that support sucessful prognosis, especially among 
patients with poor long term outcomes19. Furthermore, these approaches can augment parallel efforts using clinical 
markers for earlier identification of sepsis and septic shock, providing meaningful input at the point of care20–22. 
Using functional gene-set enrichment analysis, we validated the known septic shock-related genes, pathways and 
functional groups, and identified the unexplored septic shock-related genes and functional groups. Discovery of 
potential gene biomarkers may provide effective septic shock diagnosis, treatment, and prognosis.

Results
The pediatric septic shock dataset contains gene expression profiles of peripheral blood samples collected from 
181 patients including 154 survivors and 27 non-survivors within the first 24 hours of admission. Overall mean 
age of the patient cohort was 3.69 years with a standard deviation of 3.28. Mean age of the survivors was 3.78 years 
(standard deviation of 3.15), compared to 3.19 (standard deviation of 3.93) for the non-survivors. Males (109; 
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60.2%) had higher representation than females (72; 39.8%). Of the 27 non-survivors, 19 were male and only 8 
were female; whereas, in the non-survivor group the male and females were 90 and 64, respectively. Clinical char-
acteristics (such as mortality, organism, source of infection, malignancies, immunosuppression, gram-positive 
bacteria, and acute kidney injury) of the 181 patients are included in Supplementary Dataset 1.

Etiologic diagnosis was identified for 107 (59.12%) patients. As shown in Table 1, the most frequently identi-
fied pathogens were Streptococcus pneumoniae (in 17 cases), Staphylococcus aureus (in 17 cases), and Streptococcus 
pyogenes (in 12 cases). Detailed clinical characteristics including source of infection and organism are given in 
Supplementary Dataset 1.

Identification of differentially expressed upregulated and downregulated genes.  Based on pre-
set criteria of an adjusted p-value < 0.05, a total of 53 genes from 21,731 were shown to be differentially expressed 
genes (DEG) between Survivor and Non-survivor types, including 47 genes that were upregulated and 7 genes 
that were downregulated. Those DEGs with a fold change of at least 1.5 (n = 16) is shown in Table 2 (For complete 
list, refer to Supplementary Dataset 1).

Functional enrichment analysis of differentially expressed genes.  53 DEGs were analyzed by 
KEGG pathway and Gene Ontology (GO) term enrichment. A total of 52 genes were recognized in the DAVID 
database. KEGG pathway analysis revealed rheumatoid arthritis (RA) (hsa: 05323), and cell cycle (has: 04110) 
pathways as the most significant pathways (Table 3). GO analyses of the DEGs demonstrated that mitotic sis-
ter chromatid segregation (GO: 0000070), immune response (GO: 0006955), cell division (GO: 0051301), and 
chemokine-mediated signaling pathway (GO: 0070098) were the most enriched biological process (BP) terms 
(Table 3). Chemokine activity (GO: 0008009) was the most enriched term under molecular function (MF) 
(Table 3). Chemokine interleukin-8-like domain (IPR001811), CC chemokine, conserved site (IPR000827) 
InterPro protein functional groups were among the significantly enriched functional classes associated with sep-
tic shock development (Table 3).

Figure 1 illustrates a heatmap of 53 selected DEGs in survivor and non-survivor groups. The vertical axis 
represents patient samples (see Supplementary Dataset 1 for more details), and the horizontal axis represents 
DEGs with the log2 gene expression intensity values. Red and green represent the upregulated, and downregulated 
genes, respectively. The heatmap is clustered using both samples and genes categories. Right vertical bars are used 
for annotation of mortality, pathogen, gram-positive, immunosuppression, gender status, and infection source. 

Etiology Number of patients Total (%)

Streptococcus pneumoniae 17 9.39

Staphylococcus aureus 17 9.39

Streptococcus pyogenes 12 6.63

Klebsiella 9 4.97

Streptococcus agalactiae 7 3.87

Neisseria meningitidis 7 3.87

Enterococcus 5 2.76

Gram-negative rods 4 2.21

Simplexvirus 3 1.66

influenza A virus 3 1.66

Mixed 3 1.66

Enterobacter 2 1.11

Hemophilus 2 1.11

Pseudomonas 2 1.11

Serratia 2 1.11

Acinetobacter 1 0.55

Adenovirus 1 0.55

BK virus 1 0.55

Candida 1 0.55

Clostridium 1 0.55

Cytomegalovirus 1 0.55

Escherichia coli 1 0.55

Group F Streptococcus 1 0.55

Human metapneumovirus 1 0.55

Moraxella 1 0.55

Parainfluenza 1 0.55

Rickettsia 1 0.55

Unknown 74 40.88

Table 1.  Etiology of septic shock in 181 patients.
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There are two major sample clusters at the top level of the dendrogram. Only 4 (15%) out of 27 non-survivors 
were in the first cluster, while, the remaining 85% formed the second cluster. Similarly, for the gram-positive 
category, samples formed two clusters. We observed no clear trends or cluster formation for the other annotation 
groups. Genes were clustered into two major groups of downregulated genes (MT1M to CFH except for DDIT4 
and RGL1), while the remaining genes clustered in the upregulated category. Overall, DDIT4, NDUFV2, and 
TNFRFS10C were the most highly expressed genes, whereas AREG, CCL20, and CFH were the least expressed 
genes.

Discussion
This study of peripheral blood mRNA sequences revealed key genes and functional characterization associated 
with septic shock survival and non-survival23. From the differential gene expression analysis, we identified poten-
tial septic shock biomarkers that may help in an unbiased septic shock diagnosis and effective treatment, and 
ultimately improving prognoses.

Differntially expressed gene analysis using septic shock samples provides insights into the functional charac-
terization of genes between groups of septic shock survivor and non-survivor samples. However, like any other, 
microarray data analysis is incomplete without performing adjustment for multiple testing. Due to approximately 
20,000 (approximate number of genes on a standard microarray chip) independent tests, it is expected to get at 
least 20 test scores by random chance when we allow a stricter p-value threshold of, for example 0.001. To avoid 
this situation, adjustment for multiple testing was utilized, and we used the Benjamini Hochberg method. For a 
false-discovery rate (FDR) controlling procedure, adjusted p-value of an individual hypothesis is the minimum 
value of FDR for which the hypothesis is first included in the set of rejected hypotheses, and we used an adjusted 
p-value cut-off of 0.0524.

Gene Fold Change Average Expression t-statistics p-value adj. p-value Reference

DDIT4 2.12 8.441545 5.490723 1.33E-07 0.000592 26,49

CCL3 2.12 6.208106 4.627029 7.02E-06 0.012717 29

PRG2 2.11 5.48492 5.611777 7.35E-08 0.000533 —

MT1M 1.78 3.72997 5.641576 6.35E-08 0.000533 —

CDC20 1.68 6.18643 4.059008 7.31E-05 0.040893 25

KIF20A 1.66 4.940242 4.673723 5.74E-06 0.012717 —

MAFF 1.64 6.815799 4.437113 1.58E-05 0.015559 50

EBI3 1.64 5.41593 4.517058 1.12E-05 0.013575 51

MELK 1.63 6.413027 4.141523 5.27E-05 0.034718 —

TOP2A 1.58 4.997892 4.045113 7.72E-05 0.040893 52

NUSAP1 1.54 6.627514 3.928091 0.000121 0.049772 53

RGL1 1.52 7.288761 4.447937 1.51E-05 0.015559 54

ARHGEF40 −1.66 6.880613 −3.994983 9.38E-05 0.043368 —

LOC254896 −1.65 8.498379 −4.452352 1.48E-05 0.015558 —

SLC46A2 −1.61 5.880150 −4.084894 6.60E-05 0.039833 —

TNFRSF10C −1.54 8.678817 −4.643272 6.55E-06 0.012717 55

Table 2.  List of most significant upregulated and downregulated genes in septic shock.

Functional 
Category ID Functional Term

Gene 
Count

adjusted 
p-value

Fold 
Change

Benjamini 
Score

BP GO:0000070 Mitotic sister chromatid segregation 4 4.82E-05 54.83 0.0246

BP GO:0006955 Immune response 8 1.80E-04 6.51 0.0453

BP GO:0051301 Cell division 7 4.61E-04 6.85 0.0763

BP GO:0070098 Chemokine-mediated signaling 4 0.001093 19.30 0.0776

BP GO:0007059 Chromosome segregation 4 9.64E-04 20.15 0.0797

BP GO:0007067 Mitotic nuclear division 6 6.88E-04 8.29 0.0851

BP GO:0030593 Neutrophil chemotaxis 4 8.84E-04 20.76 0.0873

MF GO:0008009 Chemokine activity 4 3.63E-04 28.12 0.0467

KEGG pathway hsa05323 Rheumatoid arthritis 5 2.58E-04 15.03 0.0226

KEGG pathway hsa04110 Cell cycle 5 9.49E-04 10.66 0.0413

InterPro IPR001811 Chemokine interleukin-8-like domain 4 2.01E-04 34.33 0.0247

InterPro IPR000827 CC chemokine, conserved site 3 0.001602 49.35 0.0953

Table 3.  Functional enrichment of differentially expressed genes. BP: Biological Process; MF: Molecular 
Function; CC: Cellular Component.
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We identified CDC20 as one of the top upregulated genes, along with LCN2, and CD24, similar to the findings 
of Dong et al.25, which studied development of trauma-induced sepsis in patients. However, our study population 
was much more diverse (Table 2 and Supplementary Dataset 1). The most significant upregulated gene identified 
was DDIT4 (DNA damage-inducible transcript 4-like). PERSEVERE-XP study had also identified DDIT4 gene 
directly related to TP537. DDIT4 (REDD1) is increased in septic shock, can negatively regulate mTORC1 activity 
and plays an important role in energy homeostasis26. We found CCL3 as the second-most significant upregulated 
chemokine, a fundamental component of acute-phase response to endotoxin in humans and regulation of leu-
kocyte activation and trafficking27. Elevated levels of CCL3 have been detected within the first 24 hours of sepsis, 
suggesting its unique role in innate immune function28,29. Further studies are needed to understand the mecha-
nisms of these identified genes in septic shock development. On the other hand, TNFRSF10C, a downregulated 
gene has been shown to play an essential role in sepsis immune response30.

The set of genes identified is then examined for over-representation of specific functions or pathways. 
Septic shock survivors were distinguished from non-survivors by differential expression of genes involved in 
the immune response, chemokine-mediated signaling, neutrophil chemotaxis, and chemokine activity. Sepsis 
impacts the immune responses by directly altering life span, production, and function of effector cells responsible 
for homeostasis31. We identified the immune response (GO:0006955) term from DAVID analysis and there has 
also been evidence that understanding the immune response to sepsis provides opportunities to develop effective 
treatment strategies32.

Chemokines play a critical role in sepsis and septic shock development, and molecules that block chemok-
ine and chemokine receptor activity may prove to be useful in the identification of sepsis33. Our differentially 
expressed genes mapped to chemokine-mediated signaling (GO:0070098), chemokine activity (GO:0008009) 
molecular function, chemokine interleukin-8 like domain (IPR001811), and chemokine conserved site 
(IPR000827).

Sepsis and rheumatoid arthritis (RA) have been known to be associated for over 50 years34. RA is shown to be a 
risk factor in sepsis patients and sepsis infection could trigger RA35. We identified RA KEGG pathway (hsa:05323) 
using our differentially expressed gene set to be statistically significant (Table 3). We analyzed the literature to 
look for other underlying genetic factors responsible for septic shock. Five (CCL3, CDC20, TNFRSF10C, EBI3, 
TOP2A) of the 53 identified genes were already shown to be involved in sepsis, and the remaining 48 genes from 
our list were not shown to be involved in sepsis. These genes may contribute to the septic shock response. Table 1 
and the Discussion section above explains it in further detail. The SLC46A2 is downregulated in the septic shock 
non-survivor group (Fig. 1) and have been shown to be involved in T-cell homeostasis (GO:0043029). On the 
other hand, the LCN2 was identified as the upregulated gene and recently proposed as a biomarker involved in 
acute kidney injury (AKI)36. Overall, 22.6% (41/181) patients had AKI, whereas, in the non-survivors, there were 
70% (19/27) patients who had AKI (see Supplementary Dataset 1 for more details).

Gene expression changes shown in our results are based on the peripheral blood cells and may not be extrap-
olated as occurring at the organ or tissue level23,37. Therefore, extra care must be taken while generalizing host 
immune responses or chemokine activities in septic shock patients. Besides, variations in gene expression pro-
files of survivors and non-survivors of septic shock patients could be due to other unexplored confounding fac-
tors (such as patient demographics) rather than sepsis-related biology38. On the other hand, the blood-based 

Figure 1.  Heatmap representing differentially expressed genes between survivor and non-survivor groups, with 
pathogen, gram-positive, immunosuppression, gender status, and infection source as annotation.
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biomarkers have the advantage of being minimally-invasive. Therefore, in combination with other clinical phe-
notypic data, these minimally-invasive biomarkers may enable rapid recognition of poor long term outcomes39 
Large cohorts replication studies and network analysis studies are needed to gain insights into relationships 
between these biomarkers and the survival/non-survival of cohorts40. To avoid the selection bias, analysis must 
be expanded to other independent data sets.

This work can be expanded by experimentally validating the identified blood-based biomarkers and develop-
ing robust machine learning methods to build a septic shock prediction models using different omics data from 
diversified patient cohorts.

Materials and Methods
Sepsis and septic shock.  Bacteremia or another pathogenic infection triggers a serious inflammatory 
response called sepsis, which typically includes an increased number of white blood cells, rapid heart rate and 
breathing rate, and fever1. The response also affects many major organ failures. Sepsis that results in poor perfu-
sion to end organs resulting in multiple organ failure is defined as a septic shock7.

Data collection.  Expression microarray data was collected from the NCBI Gene Expression Omnibus repos-
itory41. The dataset contains gene expression profiles of peripheral blood samples from 181 septic shock patients 
including 154 survivors and 27 non-survivors who were admitted to the pediatric intensive care unit (PICU) 
within the first 24 hours42. For all 181 samples, blood was drawn on day 1 of the PICU stay. GEO accession num-
ber for data used in the study is GSE66099. Data was collected from the Affymetrix Human Genome HG-U133_
Plus_2 (GPL570 platform).

Normalization and background correction.  The R Affy module43 was used to remove technical varia-
tions and background noise. The Quantile Normalization Method44 was used to normalize data and background 
correction was performed using the Robust Multi-Average45 parameter method46.

Probe to gene mapping.  Affymetrix probes were mapped to the genes using information provided in the 
Affymetrix database (hgu133plus2.db). We used average expression values when multiple probes mapped to the 
same gene19.

Identification of differentially expressed genes.  Differentially Expressed Genes (upregulated and 
downregulated genes) were identified using R limma package with a Benjamini-Hochberg (BH) correction 
method and adjusted p-value of <0.05.

Functional analysis.  We used DAVID47 for functional enrichment analysis of the DEGs from samples of 
septic shock survivors or non-survivors. Biological Process (BP), Cellular Component (CC), and Molecular 
Function (MF) were identified from the Gene Ontology database. For the GO functional groups, KEGG path-
ways, and InterPro functional terms returned from DAVID functional analysis, we considered an adjusted 
p-value threshold of ≤0.05 and gene count of 3 or more from this study.

Statistical analysis.  R programming language48 was used for downloading the Affymetrix data and gene 
mapping using R Affy and Bioconductor package. A Fisher-exact test was performed for determining statistical 
significance among gene ontology terms and functional classes. Benjamini Hochberg multiple test correction 
method was used for calculating the differentially expressed genes. Heatmap of differentially expressed genes 
between survivor and non-survivor groups for top selected genes were plotted using the complexHeatmap func-
tion in R programming. Other variables (pathogen, gram-positive, immunosuppression, gender status, and infec-
tion source) were added to the heatmap for annotation.

Data Availability
R scripts other related files used for data preprocessing, normalization and differential gene expression analysis 
are available from https://github.com/akram-mohammed/septic_shock_degs. Datasets generated and analyzed 
during the study are available upon request.
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